Exercice 1

1. a) Pour la forme B₁, l'absorption est maximale pour $\lambda_1 \approx 450$ nm.

Pour la forme B₂, l'absorption est maximale pour $\lambda_2 \approx 610$ nm.

b) La forme B_1 absorbe le bleu. La couleur complémentaire du bleu est le jaune : la forme B_1 est jaune. La forme B_2 absorbe le rouge-orangé. La couleur complémentaire du rouge-orangé (entre rouge et jaune) est le cyan-bleuté : la forme B_1 est cyan-bleuté.

Exercice 2

1. A et B présentent une bande vers 1700 cm⁻¹ caractéristique de la liaison C=O. L'absence de bande après 3000 cm⁻¹ indique l'absence de liaison O-H. Les composés A et B sont donc des aldéhydes ou des cétones. Le spectre A présente une bande intense vers 2800 cm⁻¹, caractéristique de la liaison C-H de la fonction aldéhyde. Cette bande est absente de l'autre spectre. A est donc un aldéhyde et B une cétone.

2. La chaine carbonée étant préservée, on a :

3. En comparant les formules de A et B, on peut supposer que l'oxydation du butan-1-ol donne le butanal A et l'oxydation du butan-2-ol donne la butanone B.

Exercice 3

$$G = \frac{S}{l} \cdot \sigma$$
 donc $\sigma = \frac{l}{S} \cdot G = \frac{0.5 \times 3.41}{2.0} = 8.52.10^{-1} \text{ mS.cm}^{-1}$

Exercice 4

1. Les ions étant présents en proportions égales, on a [ion1] = [ion2] = c dans les 3 cas.

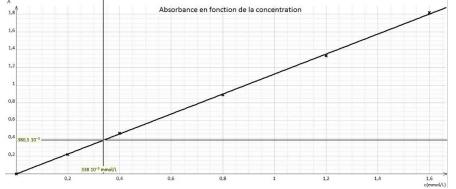
Donc :
$$\sigma_1 = \lambda(Na^+) \times [Na^+] + \lambda(Cl^-) \times [Cl^-] = c \times [\lambda(Na^+) + \lambda(Cl^-)]$$

 $\sigma_2 = \lambda(K^+) \times [K^+] + \lambda(Cl^-) \times [Cl^-] = c \times [\lambda(K^+) + \lambda(Cl^-)]$
 $\sigma_3 = \lambda(Na^+) \times [Na^+] + \lambda(HO^-) \times [HO^-] = c \times [\lambda(Na^+) + \lambda(HO^-)]$

2.
$$\sigma_4 = \lambda(K^+) \times [K^+] + \lambda(HO^-) \times [HO^-] = c \times [\lambda(K^+) + \lambda(HO^-)]$$

3. On a:

$$\begin{cases} c \cdot \lambda \left(\mathsf{K}^+ \right) = \sigma_2 - c \cdot \lambda \left(\mathsf{Cl}^- \right) & \text{(a)} \\ c \cdot \lambda \left(\mathsf{Cl}^- \right) = \sigma_1 - c \cdot \lambda \left(\mathsf{Na}^+ \right) & \text{(b)} \\ c \cdot \lambda \left(\mathsf{Na}^+ \right) = \sigma_3 - c \cdot \lambda \left(\mathsf{HO}^- \right) & \text{(c)} \end{cases}$$


Et donc

$$c \cdot \lambda(K^+) = \sigma_2 - \sigma_1 + \sigma_3 - c \cdot \lambda(HO^-)$$

Finalement: $c \cdot \lambda(K^+) + c \cdot \lambda(HO^-) = \sigma_4 = \sigma_2 - \sigma_1 + \sigma_3 = 14,98 - 12,64 + 24,87 = 27,21 \text{ mS.m}^{-1}$

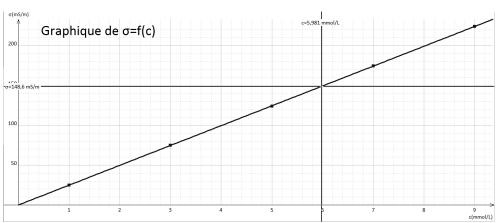
Exercice 5

- 1) C'est un dosage spectrophotométrique par étalonnage
- 2) On peut déduire du graphique que l'absorbance et la concentration sont proportionnelles.

- **3)** On lit: $c = 0.34 \text{ mmol.L}^{-1} = 3.4 \times 10^{-4} \text{ mol.L}^{-1}$
- **4)** Le volume de solution est V = 0.05 L Puisque $c = \frac{n}{V}$ on a donc :

$$n = c \times V$$

= 3,4 × 10⁻⁴ × 0,05 = 1,7 × 10⁻⁵ mol


Exercice 6

- a. Protocole de dilution :
 - Rincer tout le matériel à l'eau distillée puis avec les solutions appropriées.
 - Prélever V_i de solution mère avec des pipettes jaugées
 - Introduire ce volume dans une fiole jaugée de 50,0 mL

- Ajouter de l'eau distillée (environ 2/3 du volume de la fiole) et homogénéiser
- Compléter la fiole jaugée jusqu'au trait de jauge avec de l'eau distillée ; Homogénéiser
- **b.** On calcule V_1 : $V_1 = \frac{c_1 V}{c_0} = \frac{1.0 \times 10^{-3} V}{1.0 \times 10^{-1}} = 0.5$ mL. On déduit les autres concentrations à partir de V_1 (pas de calculatrice nécessaire!) : V_2 est 3 fois plus grande que V_1 , V_3 5 fois plus grande, etc...

,		_		, ,	•
Solution	S_1	S ₂	S ₃	S ₄	S ₅
V _i (mL)	0,5	1,5	2,5	3,5	4,5
c _i (mmol.L ⁻¹)	1,0	3,0	5,0	7,0	9,0
σ _i (mS.m ⁻¹)	24,8	75,0	124,0	174,5	224,1

c.

- **d.** Pour $\sigma' = 149,0$ mS.m⁻¹, on lit sur le graphique $c' = 6,0 \times 10^{-3}$ mol.L⁻¹.
- e. La solution S' correspond à une solution de déboucheur liquide diluée 500 fois.

On a donc : $c = 500 c' = 3.0 \text{ mol.L}^{-1}$

f. $V = 1.0 L = 1.0 \times 10^{-3} m^3$ de solution de déboucheur a une masse :

 $m = \rho \times V = 1.2 \times 10^3 \times 10^{-3} = 1.2 \text{ kg} = 1200 \text{ g}.$

Elle contient aussi $m_{NaOH} = c \times V \times M(NaOH) = 3,0 \times 1,0 \times 40,0 = 120,0$ g d'hydroxyde de sodium.

Le pourcentage en masse est donc : $\frac{m_{NaOH}}{m} = \frac{120}{1200} = 10\%$

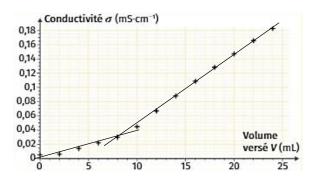
Ce pourcentage est en accord avec les indications de l'étiquette.

Exercice 7

- **a.** L'équivalence d'un titrage est le moment où les quantités de matière du réactif titrant et du réactif titré sont en proportions stœchiométriques.
- **b.** A l'équivalence, on a : $\frac{n_1}{5} = \frac{n_0}{2}$
- **c.** On a: $\frac{c_1 V_1}{5} = \frac{c V_e}{2}$ donc $c_1 = \frac{5 c V_e}{2 V_1} = \frac{5 \times 1,0 \times 10^{-2} \times 8,0}{2 \times 10,0} = 2,0 \times 10^{-2} \text{ mol.L}^{-1}$
- **d.** Pour $V_0 = 1,00$ L, on a $m_1 = c \times V_0 \times M(SO_2) = 2,0 \times 10^{-2} \times 1,00 \times 64,0 = 1,28$ g
- e. La masse m_1 correspond à la masse de dioxyde de soufre pour 1,00×10⁴ m^3 d'air.

Pour 1 m³ d'air, on a donc : $m_2 = \frac{m_1}{1.00 \times 10^4} = 1,28 \times 10^{-4} \text{ g}$

f. La masse de dioxyde de soufre par m^3 d'air est $m_2 = 128\mu g$. Cette masse est inférieure au seuil d'alerte.


Exercice 8

2. Réaction support :

 $CH_{3}COOH_{(aq)} \ + \ HO_{(aq)}^{-} \rightarrow CH_{3}COO_{(aq)}^{-} \ + \ H_{2}O_{(I)}$

- **3.** On trouve $V_E = 8.0$ mL.
- **4.** A l'équivalence, on a : $n_A = n_B$ donc $c_A \cdot V_A = c \cdot V_B$

Donc: $c_A = \frac{c \cdot V_E}{V_A} = \frac{1,0.10^{-1} \times 8}{10,0} = 8,0.10^{-2} \text{ mol.L}^{-1}$

Exercice 9

Partie 1

1.a. La relation entre volumes et concentrations pour une dilution est : $c_0 V_0 = c_S V_S$

On a donc : $c_0 = \frac{V_S}{V_0} c_S = 5 c_S$

- **1.b.** Protocole:
 - Rincer tout le matériel à l'eau distillée puis avec les solutions appropriées.
 - Prélever V's de solution mère avec une pipette jaugée
 - Introduire ce volume dans un bécher
 - A l'aide d'une éprouvette graduée, ajouter les 250 mL d'eau distillée ; Homogénéiser
- 1.c. La conductivité initiale de la solution provient des ions chlorure, mais aussi des ions sodium et potassium présents dans le lait.

Partie 2

2.a. Dans la solution, on fait réagir les ions chlorure Cl⁻ avec les ions argents Ag⁺. La solution titrante contient aussi des ions nitrates NO₃, et la solution titrée des ions sodium Na⁺ et potassium K⁺, qui ne réagissent pas. Tout au long du titrage, les concentrations [Na⁺] et [K⁺] ne varient pas (pas de réaction avec ces ions). La concentration [NO₃] va, elle, constamment augmenter au fur et à mesure que l'on ajoute de la solution titrante (pas de réaction avec ces ions).

Avant l'équivalence, les ions Cl- sont présents dans la solution titrée, et vont réagir avec les ions An+ au fur et à mesure que ces derniers

versés. On a donc [Cl-] qui diminue et [Ag+]=0. Après l'équivalence, les ions Cl- ont tous réagit et les ions Ag+ ajoutés vont donc restés en solution. On a donc [Cl-]=0 et [Ag+] qui augmente.		cst	cst
		cst	cst
		7	7
2.b. Voir tableau	[Cl ⁻]	И	0
2.c. Avant 10mL, seules [NO ₃] et [Cl ⁻] varient : l'une augmente et l'autre		0	7
diminue. Si λει est neu différent de λνος. la conductivité variera neu (elle			

Avant

Après

- 2 diminue. Si $\lambda_{\text{CI-}}$ est peu différent de $\lambda_{\text{NO3-}}$, la conductivité variera peu (elle sera quasiment constante).
- 2.d. Au-delà de 12,5 mL, seules [NO₃] et [Ag⁺] varient : elles augmentent toutes les deux. La conductivité va donc elle aussi augmenter.
- **2.e.** Au point de rupture de pente, l'équivalence a été atteinte.

Partie 3

- **3.a.** A l'équivalence, on a versé $V_{2E} = 12,4$ mL de nitrate d'argent.
- **3.b.** A l'équivalence, on a : $n_{Ag,E} = n_{Cl,0}$
- **3.c.** La quantité de matière d'ions chlorure initialement dans le bécher est donnée par $n_{Cl,0} = c_s \times V'_s$.

On a donc :
$$c_S = \frac{c_2 V_{2E}}{V_S'} = \frac{5,00 \times 10^{-3} \times 12,4}{10} = 6,20 \times 10^{-3} \text{ mol.L}^{-1}$$

Comme $c_0 = \frac{v_S}{v_0}$ $c_S = 5$ c_S (question 1.a.), on a donc $c_0 = 3.1 \times 10^{-2}$ mol.L⁻¹.

3.d. Pour 1,0 L de lait, on a $m_{Cl} = c_0 \times 1,0 \times M(Cl) = 3,1 \times 10^{-2} \times 1,0 \times 35,5 = 1,1$ g, ce qui est en accord avec les normes en vigueur.